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The paper is devoted to the theoretical investigation of the possible existence of
stationary mixing layers and of their structure in nearly perfectly conducting, nearly
inviscid fluids with a longitudinal magnetic field. A system of two equations is used,
which generalizes the well-known Blasius equation (for flow around a semi-infinite
plate) to the case under consideration. The system depends on the magnetic Prandtl
number, Pm = ν/νm, where ν and νm are the usual and the magnetic viscosities,
respectively.

For the existence of stationary flows the ratio between the flow velocity vx and
the Alfvén velocity cA = Hx/(4πρ)1/2 (ρ being the fluid density) plays a critical role.
Super-Alfvén (vx > cA) flows are possible at any value of Pm and for any values of vx
and Hx on the layer boundaries. Sub-Alfvén (vx < cA) stationary flows are impossible
at any value of Pm and for any values of the differences in vx and Hx across the
layer, except for two cases: Pm = 0 and Pm = 1. When Pm = 0, i.e. when the fluid is
strictly inviscid, ν = 0, flow is possible in both the super- and sub-Alfvén regimes;
however, the magnetic field must be uniform, Hx = const, Hy = 0 in this case. For
Pm = 1 both flow regimes are also possible; however, the sub-Alfvén flow is possible
only for a definite relationship between the magnetic field and velocity differences:
∆Hx = −∆vx (in corresponding units). For the case where the relative differences in
vx and Hx across the layer are small, ∆vx � v̄x, ∆Hx � H̄x, solutions are obtained in
explicit form for arbitrary Pm (here v̄x and H̄x are averaged over the layer). For the
specific case Pm = 1, exact analytical solutions of basic system are found and studied
in detail.

1. Introduction
On numerous occasions the model of a plane-parallel inviscid free shear flow serves

as a good approximation of real free flows with large Reynolds numbers. Such a
model has been successfully employed as the mean flow in theoretical studies on
the development of small perturbations, and provides answers to many fundamental
questions in hydrodynamic stability theory (see, for example, Drazin & Howard 1966).

However, there are situations where such a model is not sufficient, and proper
allowance must be made for viscosity. Here, we are dealing with problems in which
a substantial role is played by a so-called critical layer (CL), a narrow region on
the flow profile where the phase velocity of the perturbation wave coincides with the
fluid velocity. It is well-known that the role played by the CL becomes particularly
important in the theory describing the weakly nonlinear development of perturbations
because it is within the critical layer that the nonlinear processes dominate. Since
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Figure 1. Formation of the free mixing layer behind the separating plate under the influence of
viscous friction (schematically).

just the viscous effects are responsible for the structure of such CLs (Benney &
Bergeron 1969; Haberman 1972; Brown & Stewardson 1978; Churilov & Shukhman
1996) they must of necessity be taken into account (inside the CL at least). On
the other hand, taking the viscosity into account leads to the fact that the flow
cannot be treated as strictly parallel, and for a consistent construction of a weakly
nonlinear theory, one has to take into consideration the weak non-parallelism of
the flow. Taking this into account is especially important in problems of the spatial
evolution of perturbations when their downstream development is investigated (see,
for example, Goldstein & Hultgren 1988; Churilov & Shukhman 1994; Shukhman
& Churilov 1997). The reason is that viscous spreading effects of the main flow can
compete with enhancement effects of perturbations. In principle, if it is proposed
to take into account the flow non-parallelism only in the CL region and only over
a short length along the flow, it is then possible to restrict ourselves merely to the
perturbation method, and to take into account the non-parallelism as a correction to
the main parallel flow. This was done in the references just cited. However, a more
consistent approach involves constructing a mean flow which includes from the outset
the spreading effect, and is constructed based on the initial viscous equations.

Under laboratory conditions, one of the most extensively used methods of producing
mixing layers involves merging two parallel streams of nearly inviscid fluid flowing
with different velocities on different sides, y > 0 and y < 0, of a thin separating
semi-bounded (x < 0) plate (see figure 1). In the region x > 0, the flows mix together,
and viscous friction gives rise to a transition layer which slightly expands (δ ∼ (νx)1/2)
downstream. Such a mixing layer is sometimes referred to as a free boundary layer.

The solution for an expanding (under the action of viscous forces) mixing layer was
originally found by Lock (1935) who applied the Blasius equations (see e.g. Landau
& Lifschitz 1987) which were derived for describing a laminar boundary layer on a
semi-infinite plate (x > 0, y > 0), to the problem of a free mixing layer by substituting
the boundary condition on the plate (i.e. when y = 0) for a boundary condition when
y = −∞.

A much more challenging problem involves a consistent construction of the mean
flow in the situation where a longitudinal magnetic field comes into play. Models of
plane flows with a parallel magnetic field are widely used in magnetohydrodynamic
stability theory (see, for example, Drazin & Howard 1966; Kent 1968; Chen & Mor-
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rison 1991; Shukhman 1998a,b). The reason is that, with the magnetic field present,
one further characteristic, the Alfvén velocity, emerges in the problem. Alfvén waves
provide an additional carrier of perturbations, and can influence the upstream flow.
On this basis, the question of the possibility of existence of stationary solutions with
a longitudinal magnetic field becomes non-trivial, and calls for a special investigation.
An affirmative answer to this question becomes particularly doubtful in the situation
where the Alfvén velocity somewhere exceeds the flow velocity, cA > umin(y). However,
it is this question that is highly important for a correct statement of the problem of
the nonlinear development of disturbances in magnetic mixing layers (for details see
the end of § 6).

The non-trivial role of the parameter β = cA/v (characterizing the relationship
between electromagnetic forces and inertial forces) was detected in earlier studies
on viscous MHD flows of perfectly conducting fluid with a longitudinal magnetic
field streaming past bodies (Hasimoto 1959a). Specifically it was shown that a super-
Alfvén flow (β < 1) is qualitatively similar to the flow of ordinary fluid, while the
sub-Alfvén flow (β > 1) manifests unusual properties. For instance, a viscous wake
which is present in ordinary flows behind the body faces forward in sub-Alfvén flows.
Hasimoto (1959a) suggested that this effect is associated with Alfvén waves.

The objective of this paper is to generalize Lock’s problem of a free mixing layer
to the case with a magnetic field, i.e. to study its structure at different values of
the magnetic Prandtl number Pm and different parameters of interacting streams, to
obtain (if it is possible) explicit analytical expressions for magnetic field and velocity
profiles for arbitrary Pm, and to ascertain whether stationary sub-Alfvén mixing layers
exist.

Various problems concerning the MHD boundary layer at obstacles for different
boundary conditions on the surface of a body for different mutual orientations of
the magnetic field and velocity, with the shape of the body taken into account, have
been considered in a large number of publications. For instance, Sears & Resler
(1958) studied the perturbation of a parallel, purely inviscid flow of a nearly perfectly
conducting fluid near an infinite sinusoidal wall with a parallel and perpendicular
direction of the external magnetic field.

A very similar situation when the magnetic field and the velocity in the external
flow are parallel to the surface of a flat plate was studied by Glauter (1962), Gribben
(1965, 1967), Ingham (1965), Stewartson (1965), and Meksyn (1962, 1966). As a rule,
the solutions are constructed in the form of series in small parameters Pm = ν/νm or
β = cA/v. Meksyn (1962, 1967) also studied the structure of the boundary layer at
different Pm, and found the impossibility of stationary sub-Alfvén boundary layers
(the terms Alfvén velocity and flow velocity are used to mean their values in the
external flow). The cited references address mainly flows of an incompressible fluid.
Allowance for the compressibility complicates the problem considerably, and only a
small number of publications exist on this issue (Ingham 1965, 1967).

By considering the appropriately determined magnetic Reynolds number and usual
Reynolds number to be large, Rem � 1, Re� 1, and also by limiting attention to the
case of an incompressible fluid,† we shall apply, following Lock, the approach used

† Here we confine ourselves only to the simpler case of an incompressible fluid when the sound
velocity greatly exceeds both the Alfvén velocity and the flow velocity. Possible effects associated with
magnetosonic waves are thereby excluded from consideration. Note that an attempt to generalize
Lock’s solution to the case of compressible fluid without magnetic field was made by Groppengiesser
(1969). However even in the problem without magnetic field he found only one, very specific class
of solutions for which the temperature of fluid T is a function only of the x-component of velocity,
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in studies of the boundary layer, to the problem of the mixing of two free flows with
different longitudinal magnetic fields.

It will be shown that super-Alfvén flows exist at any value of Pm, and for an
arbitrary relation between velocity and magnetic field differences across the layer. On
the other hand, sub-Alfvén flows are impossible, at least they cannot be obtained
by the method described above. This result for sub-Alfvén flows is rather surprising,
especially in the light of the fact that at the two selected values of Pm, Pm = 0 and
Pm = 1, sub-Alfvén flows are still possible, hence it would seem that such flows could
also exist at least in the range 0 6 Pm 6 1.

The paper is organized as follows. In § 2 we write the basic equations and recall the
known results relevant to the case without a magnetic field. In § 3 we describe the exact
solutions which can be obtained in two limiting cases: Pm = ∞ (perfect conductivity,
frozen magnetic field), and Pm = 0 (inviscid fluid). It will be shown that when Pm = ∞
only super-Alfvén flows are possible, but when Pm = 0, sub-Alfvén flows are also
admissible. In § 4 we describe the exact solutions for Pm = 1, and demonstrate that
sub-Alfvén flows are also possible here. In order to gain an understanding of whether
sub-Alfvén flows are possible at an arbitrary Pm (when no exact solutions can be
found), in § 5 (and in the Appendix) we undertake an asymptotic analysis for the
case of small relative velocity and magnetic field differences. The analysis will show
that sub-Alfvén flows are impossible at any Pm (except for the above-mentioned cases
Pm = 0 and Pm = 1), although super-Alfvén flows are possible for any Pm and for any
given relations between the magnetic field and velocity differences. These super-Alfvén
mixing layers are described by explicit analytic expressions. Some interesting limiting
cases are discussed in detail in § 5.1.

In § 6, the results obtained are summarized and an attempt is made to give a physical
interpretation of the non-existence of sub-Alfvén mixing layers in the general case
and their possibility in the special case Pm = 1.

2. Basic equations and reference information on the solution with no
magnetic field

The system of two-dimensional equations of incompressible magnetic hydrodynam-
ics has the form

{∆ψ, ψ} − 1

4πρ
{∆A,A} = ν∆2ψ, (2.1)

{A,ψ} = νm∆A, (2.2)

where ψ(x, y) is the stream function, A(x, y) is the z-component of the magnetic field
vector-potential, ρ is the fluid density, ∆ = ∂2/∂x2 + ∂2/∂y2, {a, b} = ∂a/∂x ∂b/∂y −
∂a/∂y ∂b/∂x and

vx =
∂ψ

∂y
, vy = −∂ψ

∂x
, Hx =

∂A

∂y
, Hy = −∂A

∂x
.

Here vj and Hj are the velocity component and the component of the magnetic field,
respectively. In (2.2) it is assumed that electric field is absent, Ez = 0.

The transition from the system (2.1), (2.2) to the boundary layer approximation
implies that the derivatives with respect to x are considered to be much smaller than

T = T (vx), while the ordinary Prandtl number P is exactly equal to unity. Nevetheless, this solution
has been used to date as a model of background flow in nonlinear stability problems of compressible
fluid (Goldstein & Leib 1989; Leib 1991).
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the derivatives with respect to y, and the velocity and magnetic field y-components,
respectively, are considered to be smaller than the x-components: vy/vx ∼ Hy/Hx ∼
δ/l � 1. Here δ and l are the typical scales of the flow in y and x. As a result, instead
of (2.1) and (2.2) we have (Vatazhin, Lyubimov & Regirer 1970)(

ψ′
∂ψ′

∂x
− ψ′′ ∂ψ

∂x

)
− 1

4πρ

(
A′
∂A′

∂x
− A′′ ∂A

∂x

)
= νψ′′′, (2.3)

∂A

∂x
ψ′ − A′ ∂ψ

∂x
= νmA

′′. (2.4)

The prime denotes the derivative with respect to y. Note that the transition from
(2.1) to (2.3) corresponds to the assumption of a constant total pressure, p+H2/8π =
const, in analogy with the usual hydrodynamics where a similar transition signifies a
constancy of fluid pressure, p = const.

To simplify the subsequent formulas, we put (4πρ)1/2 = 1. In these units, the
magnetic field has the dimension of velocity.

Our concern is with solutions of the system of equations (2.3) and (2.4) which
describe flows such as a mixing layer, that is, flows with boundary conditions

vx =

{
U, y → −∞
U+∆U, y → +∞, Hx =

{
H−, y → −∞
H+, y → +∞. (2.5)

Further, it is assumed that U > 0, and we choose the value of the velocity difference
∆U as the velocity unit: ∆U = 1. Since the problem does not involve a typical length
parameter l, using the same argument as when passing from the Prandtl equation
to the Blasius equation (see e.g. Landau & Lifschitz 1987) we conclude that in the
region x > 0 the solution must be of the form

ψ = (νx)1/2 f(ξ), A = (νx)1/2 χ(ξ), (2.6)

where ξ = y/(νx)1/2. In these variables, the velocity and magnetic field components
are

vx = f′, vy = 1
2

(ν/x)1/2 (ξf′ − f),

Hx = χ′, Hy = 1
2
(ν/x)1/2 (ξχ′ − χ),

}
(2.7)

where the prime denotes the derivative with respect to ξ, and the system (2.3), (2.4)
becomes a system of ordinary differential equations:

1
2
(χχ′′ − ff′′) = f′′′, (2.8)

1
2
(χf′ − χ′f) =

1

Pm
χ′′. (2.9)

In the case without a magnetic field, χ ≡ 0, equation (2.8) becomes the well-known
Blasius equation. We shall consider ν and νm to be of the same order, i.e. Pm ≡
Rem/Re = O(1), although the limiting cases of large and small Pm also are investigated
to provide the character of solution behaviour at different Pm.

The system (2.8), (2.9) requires five boundary conditions, four of which are formu-
lated using (2.5) and (2.7):

f′(−∞) = U, f′(∞) = 1 +U, (2.10a)

χ′(−∞) = H−, χ′(∞) = H+. (2.10b)

To determine the fifth boundary condition, note that the system (2.8), (2.9) does



342 I. G. Shukhman

12

10

8

6

4

2

0
–8 –4 0 4 8

0.6

0.4

0.2

0
–12 –8 –4 0 4 8

nn

10

5

1

0.5
U = 0

0.5
0

1

5
10

U = 0

0.5

1

5

10

f «

0.
5 

(n
f«

–
f

)
Figure 2. The vx- and vy-profiles for the flow with no magnetic field. Numbers labelling the curves

indicate a corresponding value of the velocity U.

not contain the variable ξ in an explicit form. Therefore, if the pair of functions f(ξ)
and χ(ξ) is the solution of the system with the boundary conditions (2.10), then the
pair f(ξ− ξ0) and χ(ξ− ξ0) is also the solution of this system with the same boundary
conditions. The parameter ξ0 appears to fix the ‘centring’ of the solution in ξ and
it can be chosen only through a detailed matching of the solution from the region
of the separating plate (x < 0) with the solution in the flow region of our interest
well away from the plate edge (x� ν/∆U). We will not concern ourselves with such
a matching because of the extreme difficulty of such a task but leave ξ0 as a free
parameter, the specification of which provides the missing fifth boundary condition.

It will be recalled that the usual hydrodynamic solution for the mixing layer was
obtained by Lock (1935). He integrated the Blasius equation

2f′′′ + ff′′ = 0 (2.11)

with the particular case of the boundary conditions (2.10a), in which U = 0 (i.e.
f′(−∞) = 0, f′(∞) = 1). As the third boundary condition, he used the vanishing of
the velocity y-component when ξ = 0: vy(0) ∝ (f′ξ − f)ξ=0 = 0, i.e. f(0) = 0. Since
Lock’s paper is not readily available (although presented in detail in the somewhat
more easily available report of Gropengiesser 1969), we reproduced its results by
supplementing them by our own numerical calculations for U 6= 0.

Figure 2 shows the profiles of the functions f′(ξ) and 0.5(ξf′ − f), with which the
velocity components vx and vy are connected (see (2.7)), at different U. The curve
with U = 0 corresponds to the solution obtained by Lock (1935).

In the case U � 1 one can obtain the analytical solution

f = {U + 1
2
[1 + erf ( 1

2
ξ
√
U)]}ξ − (πU)−1/2[1− exp (− 1

4
Uξ2)],

vx =U + 1
2
[1 + erf ( 1

2
ξ
√
U)],

}
(2.12)

where erf (x) = (2/
√
π)
∫ x

0
exp (−t2) dt is the probability integral.

The flow (2.12) is called Blasius mixing layer, and often it is used as a standard
model in stability investigations (even for flows with ∆U/U not small).

The solutions of (2.11) when U = O(∆U) = O(1) describe an expanding mixing
layer, in which δ/x ∼ vy/vx ∼ (ν/x)1/2 ≈ Re−1/2 � 1, if the local Reynolds number
is defined as Re = x∆U/ν ≡ x/ν � 1. (For solutions with a relatively small velocity



Stationary solutions for mixing layers with a longitudinal magnetic field 343

difference ∆U/U ≡ U−1 � 1 we have δ/x ∼ (ν/xU)1/2, i.e. again δ/x ∼ Re−1/2,
because it is more reasonable here to define the Reynolds number as Re(x) = xU/ν.)

3. Flows with a magnetic field: the cases of perfect (Pm →∞) conductivity
and ideal (Pm = 0) fluid

In the general case the system of equations (2.8) and (2.9) is rather complicated
and must be solved numerically. In three special cases, however, it is relatively easy
to analyse its solutions analytically. First, is the case where the magnetic viscosity is
much smaller than the usual viscosity, Pm → ∞, arbitrarily referred to as the perfect
conductivity case. Second, is the case when the usual viscosity is much smaller than
the magnetic viscosity, Pm → 0, referred to as the inviscid fluid case. Third, is an
intermediate case where the magnetic viscosity is exactly equal to the usual viscosity,
Pm = 1. In this Section we shall consider the first two cases, and the third case will
be detailed in the next Section.

3.1. The case Pm →∞
The right-hand side of (2.9) becomes zero, and we have χ′f − χf′ = 0. From this and
the boundary conditions (2.10) it follows that

χ(ξ) = β f(ξ), β = const =
H−
U

=
H+

1 +U
. (3.1)

It is evident that solution is not possible with an arbitrary relationship of values of
the magnetic field on different sides of the layer but only when the condition

∆H ≡ H+ −H− = β (3.2)

is satisfied. Also, the ratio of the Alfvén velocity to the flow velocity is the same at
all points of the stream and equals β: cA(ξ)/vx(ξ) ≡ Hx(ξ)/vx(ξ) = β. On substituting
(3.1) into (2.8), we obtain

2f′′′ + (1− β2)ff′′ = 0. (3.3)

Substituting ξ̃ = µ1/2ξ, f̃ = µ1/2f, where µ ≡ 1 − β2, reduces equation (3.3) to the
Blasius equation (2.11) with the boundary conditions (2.10a). Therefore, f̃(ξ̃) = fL(ξ̃)
and

f(ξ) = µ−1/2fL(µ1/2ξ), (3.4)

where fL(ξ) is any solution of equation (2.11) with the boundary conditions (2.10a).
From (3.4) it follows that the layer thickness

δ ∼ (νx/µ)1/2 (3.5)

in the presence of a magnetic field, β 6= 0, is larger than in the case with no magnetic
field, and tends to infinity when the Alfvén velocity tends to the flow velocity, i.e.
when β → 1. With an increase in layer thickness, we are outside the validity range of
the basic equations describing quasi-parallel flows with quasi-parallel magnetic fields.
One can also check that when β > 1, equation (3.3) does not have any solutions at all
with the required boundary conditions. This means that sub-Alfvén (vx < cA) flows
of such a type with a frozen-in magnetic field are impossible.

Note that an unambiguous connection between the magnetic field difference and
the velocity difference (3.2) arises only within the perfect conductivity approximation
and when the requirement of continuity of magnetic field is imposed. In principle,
otherwise infinitely thin current sheets are possible. For example such surface currents
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appear at the walls of streamlined obstacles in perfectly conducting fluid (Sears &
Resler 1958). It will be shown in § 5 that in the mixing layer a thin current sheet
also appears if ∆H 6= β, and its width is defined by large but finite conductivity,
∆y ∝ (νm)1/2. In other words, inclusion of an arbitrary large but finite value of Pm (an
arbitrary small magnetic viscosity) makes possible a continuous super-Alfvén solution
with an arbitrary ∆H and not only with ∆H = β. In this case the magnetic field
profiles show a narrow ‘jump’ of size ∆H − β. Nevertheless, it will be shown that
even the abandonment of freezing-in does not lead to the possibility of sub-Alfvén
flows.

3.2. The case Pm = 0

In this case it is more fruitful to introduce instead of (2.6) self-similar variables based
on magnetic viscosity νm:

ψ = (νmx)1/2 f(ξ), A = (νmx)1/2 χ(ξ), ξ = y/(νmx)1/2. (3.6)

Now we have

vx = f′, vy = 1
2

(νm/x)1/2 (ξf′ − f),

Hx = χ′, Hy = 1
2
(νm/x)1/2 (ξχ′ − χ),

}
(3.7)

and instead of (2.8) and (2.9) we obtain

1
2
(χχ′′ − ff′′) = Pmf

′′′ = 0, (3.8)

1
2
(χf′ − χ′f) = χ′′. (3.9)

This system has an obvious partial solution which describes the well-known purely
parallel vortex sheet (with unity velocity jump) in a uniform magnetic field:

χ = H0ξ, Hx = H0, Hy = 0, (3.10)

f = Uξ + 1
2
(ξ + |ξ|), vx = U + 1

2
(1 + sign (ξ)), vy = 0. (3.11)

In this solution the Alfvén velocity cA(= H0) can be both smaller and larger than the
flow velocity.

This conclusion is fairly obvious because inviscid pure longitudinal flow in the uni-
form magnetic field does not feel the ponderomotive force, i.e. there is no interaction
between the conducting fluid and magnetic field. Hence the ratio between Alfvén and
flow velocities in this very specific case may be arbitrary.

However, we shall see in § 5 that the statement about the possibility of sub-Alfvén
flow for inviscid fluid is valid only for the case of strongly uniform field, ∆H = 0. If
∆H 6= 0 the diffusive spreading of the magnetic profile generates an Hy-component
and a ponderomotive force appears. As a result inviscid stationary sub-Alfvén flows
become prohibited. We come to the same conclusion if arbitrarily small viscosity is
permitted – then the appearance of vy due to viscous flow spreading also induces the
force.

4. Exact solutions for the case of equal viscosities (Pm = 1)
It is convenient to deal, instead of (2.9), with equations obtained as a result of its

differentiation. Then from (2.8) and (2.9) we obtain the system

f′′′ = 1
2
(χχ′′ − ff′′), χ′′′ = 1

2
(χf′′ − fχ′′). (4.1)
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Also, it is useful to bear in mind that the second equation in (4.1) has the integral

χ′′ − 1
2
(χf′ − χ′f) = const = 0. (4.2)

It is convenient to introduce the functions g1 = f − χ, g2 = f + χ, so that

f = 1
2
(g2 + g1), χ = 1

2
(g2 − g1). (4.3)

From (4.1) we obtain

g′′′1 = − 1
2
g2g

′′
1 , g′′′2 = − 1

2
g1g

′′
2 . (4.4)

Boundary conditions for (4.4) follow from (2.10) and (4.2):

g′1(−∞) = U −H−, g′1(+∞) = (1 +U)−H+,
g′2(−∞) = U +H−, g′2(+∞) = (1 +U) +H+,
(g′1g2 − g′2g1)±∞ = 0.

 (4.5)

Note that the system (4.4) is invariant with respect to the substitution g1 → g2,
g2 → g1. This is a reflection of the obvious property of the initial system (2.8) and
(2.9) implying that if the pair f and χ is a solution of this system, then the pair f
and −χ is also a solution of this system (with the appropriately modified boundary
conditions (2.10b) for χ: χ(±∞) = −H±). In other words, a change of sign of the
magnetic field does not influence the flow.

The system (4.4) allows two simple partial solutions. The first can be obtained if
we put g′′2 ≡ 0, and the second solution is obtainable by putting g′′1 ≡ 0. We obtain
an explicit form of solution in these two cases.

(i)

g′′2 = 0, g′2 = const = 4λ1, g2 = 4λ1(ξ − ξ0). (4.6)

In (4.6), ξ0 is an arbitrary constant (see comments in § 2), and the constant λ1 is
determined from the boundary conditions (4.5):

λ1 = 1
4
(U +H−) = 1

4
(1 +U +H+). (4.7)

The relation (4.7) shows that in this solution the sign of the magnetic field difference
is opposite to the sign of the velocity difference and equal to it in absolute value:

H+ = H− − 1 or ∆H = −1. (4.8)

Substitute (4.6) into the first equation (4.4). Designating ξ − ξ0 = ζ, we obtain

g′′′1 = −2λ1ζg
′′
1 . (4.9)

Integrating (4.9) gives

f = (U + 1
2
) ζ + (λ1/π)1/2

∫ ζ

0

dz1

∫ z1

0

dz2 e−λ1z
2
2 + 1

2
(πλ1)

−1/2, (4.10a)

χ = −f + (U +H−)ζ. (4.10b)

(ii) g′′1 = 0, g′2 = const = 4λ2, g1 = 4λ2(ξ − ξ0), and

λ2 = 1
4
(U −H−) = 1

4
(1 +U −H+). (4.11)

Here the magnetic field difference is equal to the velocity difference:

H+ = H− + 1 or ∆H = 1. (4.12)
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On performing the same procedure as above, we find

f = (U + 1
2
) ζ + (λ2/π)1/2

∫ ζ

0

dz1

∫ z1

0

dz2 e−λ2z
2
2 + 1

2
(πλ2)

−1/2, (4.13a)

χ = f − (U −H−)ζ. (4.13b)

We can calculate the layer thickness for these solutions, which is defined by the
relation δ =

∫ ∞
−∞dy (vx −U) (1 +U − vx):

δ1,2(x) = (νx/2πλ1,2)
1/2, λ1,2 = 1

4
(U ±H−). (4.14)

Let us call the solution with λ1 (i.e. (4.10)) the ‘narrow’ solution and the solution
with λ2 (i.e. (4.13)) the ‘wide’ solution, because when H− > 0, in accordance with
(4.14), δ1 < δ2.

From the conditions λ1,2 > 0 it follows that the narrow solution is possible only
when H− > −U and the wide solution is possible when H− < U. Since, as has already
been pointed out above, the solutions (f, χ) and (f,−χ) represent the same solution
from the dynamic standpoint, it will suffice to confine ourselves only to non-negative
values of H−, H− > 0.

It is easy to see that the wide solution is super-Alfvén at each point of the flow,
while variants are possible for the narrow solution. When H− > U + 2, the flow
in the entire stream is sub-Alfvén, and when H− < U it is super-Alfvén. When
U < H− < U + 2, the profile involves both super-Alfvén (ξ > ξc) and sub-Alfvén
(ξ < ξc) regions.

Note that when 0 < H− < 1 the x-component of the magnetic field changes its sign.
On the other hand, since the solution with a change of sign violates the applicability
conditions of the initial system (2.8), (2.9) (the quasi-parallelism is violated in the
neighbourhood of the magnetic field zero line) the narrow solution with 0 6 H− 6 1
must be excluded from the set of possible solutions.

Let us consider the behaviour of the velocity and magnetic field components. Using
(2.7), (4.10) and (4.13) we write

vx = U + 1
2
[1 + erf (t− t0)], vy = 1

2
(ν/xλ1,2)

1/2Vy(U, t0; t), (4.15)

Hx = H− ∓ 1
2
[1 + erf (t− t0)], Hy = 1

2
(ν/xλ1,2)

1/2hy(H−, t0; t). (4.16)

Here t = λ1,2ξ, t0 = λ1,2ξ0, and

Vy(U, t0; t) = (U + 1
2
) t0 + 1

2
t0 erf (t− t0)− 1

2
π−1/2e−(t−t0)2

, (4.17)

hy(H−, t0; t) = H−t0∓ 1
2
[t0 + t0 erf (t− t0)− π−1/2e−(t−t0)2

]. (4.18)

In (4.15)–(4.18), the upper sign and the index 1 refer to the narrow solution, and the
lower sign and the index 2 refer to the wide solution.

The velocity and magnetic field profiles calculated numerically for some sets of
parameters are presented in figures 3–5: Figure 3 shows the profiles of the functions
vx(U, t0; t) and Vy(U, t0; t) for two values of U, U = 0 and U = 1, and for several
values of the parameter t0. It will be recalled that the parameter t0(≡ λ1,2ξ0) determines
the centring of the solution. Profiles of the magnetic field components are shown in
figures 4 and 5. Note, that only if ξ0 = 0 do y-components of magnetic field and
velocity vanish on both sides of the layer.
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Figure 3. Profiles of the x-component of the velocity vx and the reduced y-component of the velocity
Vy = 2vy(xλ1,2/ν)

1/2 for several values of the ‘centring’ parameter t0 and for two values of the velocity
U for solutions with Pm = 1: (a) U = 0, t0 = −0.3, 0, 0.3; (b) U = 1, t0 = −0.3, 0, 0.1, 0.195, 0.3. The
horizontal axis indicates the reduced self-similar variable t = ξ/(λ1,2)1/2. (The value of H− here is
arbitrary and does not influence the form of the velocity profiles in reduced variables.)

5. The case of arbitrary Pm: flows with small relative velocity and magnetic
field differences

As has been shown in the preceding sections, sub-Alfvén flows are possible when
Pm = 0 and Pm = 1. It might be expected at first glance that they could also exist
at intermediate values of Pm at least. In order to check whether this is the case,
we now examine the case of arbitrary Pm in greater detail. Since the system (2.8),
(2.9) at arbitrary Pm defies analytical investigation in a general form, we consider the
situation when the problem involves a small parameter. We shall assume the relative
velocity and magnetic field difference to be such a parameter. Then at the main order
of perturbation theory the system (2.8), (2.9) becomes linear in this parameter, and
we can construct a solution in the form of power series of this small parameter.

Thus, let ∆U/U ≡ 1/U = ε � 1, ∆H/H− = O(ε) and assume that the magnetic
field and the velocity are quantities of the same order: H− = βU, where β = O(1), and,
without loss of generality, we assume that β > 0. In this notation, values of β < 1
correspond to super-Alfvén flows, and values of β > 1 correspond to sub-Alfvén
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y-component of field hy = 2Hy(xλ1/ν)

1/2 when H− = 2 for four values of the parameter t0
(t0 = −0.5,−0.195, 0, 0.5). The horizontal axis indicates the variable t = ξ/(λ1)1/2. (The value of
the velocity U here can be arbitrary and does not influence the form of field profiles in reduced
variables.)
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Figure 5. ‘Wide’ solution. Profiles of the x-component of the magnetic field Hx and of the reduced
y-component of field hy = 2Hy(xλ2/ν)

1/2 when H− = 0.5 and U > 0.5 for five values of the

parameter t0 (t0 = −0.5, 0, 0.2, 0.3085, 0.5). The horizontal axis indicates the variable t = ξ/(λ2)1/2.

flows. The asymptotic theory developed below holds if β is not too close to unity:
|1− β|U � 1.

It is clear that with this limitation the flow is everywhere (i.e. at all ξ) either
sub-Alfvén or super-Alfvén, because this inequality implies that |U − H−| � ∆H ∼
∆U = 1, and therefore the quantity Hx − vx(= cA − vx) cannot change sign at any
point of the profile.

We put

f = Uζ + F, χ = (Uβ) ζ + G, (5.1)

where ζ = ξ − ξ0, ξ0 being an arbitrary parameter fixed by the fifth boundary
condition (see § 2). On substituting (5.1) into (2.8) and into the equation obtained by
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differentiating (2.9), we obtain

1
2
[Uζ(βG′′ − F ′′) + GG′′ − FF ′′] = F ′′′,

1
2
[Uζ(βF ′′ − G′′) + GF ′′ − FG′′] =

1

Pm
G′′′.

 (5.2)

It is assumed that the prime in (5.2) denotes the derivative with respect to ζ. Six
boundary conditions for the system (5.2) are

F ′ =

{
0, ζ → −∞
1, ζ → +∞, G′ =

{
0, ζ → −∞
∆H, ζ → +∞, F = G = 0 when ζ → −∞.

(5.3)
Since U = ε−1 is a large parameter, the system (5.2) should be solved by the

method of matched asymptotic expansions. The outer solution occurs in the regions
ε1/2 <∼ |ζ| < ∞, and the inner solution holds in the region |ζ| <∼ ε1/2. The problem
should be solved separately in the outer regions and in the inner region, and should
be matched in the region |ζ| ∼ ε1/2 where the solutions overlap.

In the outer regions (with the proviso that |1− β| � 1/U) we have

βG′′ − F ′′ = 0, βF ′′ − G′′ = 0,

whence, in view of the boundary conditions (5.3), it follows that

F =

{
0, ζ < 0
ζ + ε1/2α, ζ > 0,

G =

{
0, ζ < 0
∆Hζ + ε1/2γ, ζ > 0,

(5.4)

where α and γ are constants which must be determined from the matching with the
inner problem.

We now turn to the inner problem and put ζ = ε1/2Z , F = ε1/2F̃ , G = ε1/2G̃.
From (5.2) we obtain

F̃ ′′′ − 1
2
Z(βG̃′′ − F̃ ′′) = 1

2
ε (G̃G̃′′ − F̃F̃ ′′),

1

Pm
G̃′′′ − 1

2
Z(βF̃ ′′ − G̃′′) = 1

2
ε (G̃F̃ ′′ − F̃G̃′′),

 (5.5)

where the prime now denotes the derivative with respect to Z . The solution of the
system (5.5) must be matched with inner asymptotic representations of the outer
solution. From (5.4) we obtain

F̃ =

{
0, Z → −∞
Z + α, Z → +∞, G̃ =

{
0, Z → −∞
∆H Z + γ, Z → +∞. (5.6)

Following perturbation theory, we seek a solution in the form

F̃ = F̃0 + εF̃1 + . . . , G̃ = G̃0 + εG̃1 + . . . , α = α0 + εα1 + . . . ,

γ = γ0 + εγ1 + . . . .

By denoting F̃ ′′0 = Φ0, G̃
′′
0 = Γ0, from (5.5) at the zeroth order in ε we have

Φ′0 − 1
2
Z(βΓ0 − Φ0) = 0,

1

Pm
Γ ′0 − 1

2
Z(βΦ0 − Γ0) = 0. (5.7)

The system (5.7) can readily be reduced to a single equation. By expressing Γ0 from
the first equation of (5.7), Γ0 = β−1(2Φ′0/Z + Φ0), and substituting it into the second
equation, we obtain

LΦ0 = 0, L = W
d

dZ

(
1

W

d

dZ

)
+ 1

4
Pm(1− β2)Z2. (5.8)
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Here W (Z) = 2Z(λ2 − λ1) exp [−(λ2 + λ1)Z
2] is the Wronskian of two linearly inde-

pendent solutions of equation (5.8), ΦN(Z) and ΦW (Z), where

ΦN(Z) = exp (−λ1Z
2), ΦW (Z) = exp (−λ2Z

2), (5.9)

and

λ1,2 = 1
8
(1 + Pm)

{
1±

[
1 +

4Pm
(1 + Pm)2

(β2 − 1)

]1/2
}

(5.10)

are the roots of the characteristic equation (1 − 4λ)(1 − 4λ/Pm) = β2. Since λ1 > λ2,
the two linearly independent solutions ΦN and ΦW will be called, as done in § 4, the
narrow and wide solutions, respectively. It is important to note that λ1 > 0 at any β,
and λ2 > 0 only for super-Alfvén flows, β < 1. When β > 1 we have λ2 < 0, and the
solution ΦW should be discarded.

Consider the cases β < 1 and β > 1 separately.

5.1. Super-Alfvén flows, β < 1

When β < 1 we seek the solution of (5.8) in the form

Φ0(Z) = ANΦN(Z) + AWΦW (Z). (5.11)

In this case

Γ0 = β−1[(1− 4λ1)ANΦN + (1− 4λ2)AWΦW ]. (5.12)

Upon integrating (5.11) and (5.12) and matching to inner asymptotic representations
of the outer solution (5.8) we obtain the expressions for the constant AN and AW

AN =
(
λ1/π

)1/2
aN, AW =

(
λ2/π

)1/2
aW , (5.13)

where

aN =
(1− β∆H)/4− λ2

λ1 − λ2

, aW =
λ1 − (1− β∆H)/4

λ1 − λ2

, (5.14)

as well as the values of the constant α0 and γ0 involved in the outer solution:
α0 = γ0 = 0.

We now can write the final expressions for the velocity vx and the magnetic field
Hx in original variables:

vx =U + 1
2
{1+ aN erf (ζ

√
λ1U) + aW erf (ζ

√
λ2U)},

Hx =H− + 1
2

{
∆H +

1− 4λ1

β
aN erf (ζ

√
λ1U) +

1− 4λ2

β
aW erf (ζ

√
λ2U)

}
.

 (5.15)

Hence it is evident that for the case of a super-Alfvén flow, it is possible to find the
solution satisfying all boundary conditions imposed. The analytical solution obtained
may be considered as a direct generalization of the solution (2.12) for a Blasius mixing
layer.

Let us discuss the properties of this solution. As would be expected, generally
the flow is described by two scales, δN ∼ (νx/λ1U)1/2 and δW ∼ (νx/λ2U)1/2, and
generally speaking both the velocity profile and the magnetic field profile include
both characteristic scales.

When the Alfvén velocity approaches the flow velocity, i.e. when 1 − β � 1, we
have

λ1 ≈ 1
4
(1 + Pm), λ2 ≈ 1

4
µPm/(1 + Pm), where µ ≡ 1− β2.
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The narrow scale δN ∼ {[νmν/(νm + ν)] x/U}1/2 in this case becomes substantially
smaller than the wide scale δW ∼ [(νm + ν)x/µU]1/2. The streamlines and magnetic
field lines become increasingly curved, the flow becomes progressively less quasi-
parallel, and when 1 − β ∼ 1/U the approximation is no longer applicable. What
happens to the solution when β > 1 will be discussed in the next subsection.

In limiting cases of a small magnetic field, β � 1, and also in cases of widely
differing viscosities, Pm � 1 and Pm � 1, each of the scales is determined by a single
viscosity only. Respectively, the magnetic field profile or the velocity profile can be
determined by only one scale. We consider these limiting cases as well as the case
Pm = 1 in greater detail. (This is also instructive in the context of a comparison of
the resulting solutions with those obtained in §§ 2–4.)

5.1.1. Weak magnetic field, β � 1

From (5.10) we have λ1 ≈ 1
4
, λ2 ≈ 1

4
Pm if Pm < 1, and λ1 ≈ 1

4
Pm, λ2 ≈ 1

4
if Pm > 1. It

is evident that the larger scale here is determined by a larger viscosity, and the velocity
profile and the magnetic field profile are related only to the respective viscosity (i.e.
to the usual and magnetic viscosities, respectively). Indeed, from (5.15) we have

f = {U + 1
2
[1 + erf ( 1

2
ζ
√
U)]}ζ + (πU)−1/2 exp (− 1

4
Uζ2),

vx =U + 1
2
[1 + erf ( 1

2
ζ
√
U)], Hx = H− + 1

2
∆H[1 + erf ( 1

2
ζ
√
PmU)].

}
(5.16)

In this limit the magnetic field has virtually no effect on the flow; therefore, the
velocity field here is the same as in the case without a magnetic field. Indeed, it is easy
to see that the solution (5.16) for the stream function f and the velocity vx coincides
with the solution (2.12) for the case without a magnetic field if in (5.16) the parameter
ξ0 is defined by the value of ξ0 = (πU3)−1/2. (This corresponds to selecting the fifth
boundary condition in the form f(0) = 0 which was used in § 2.)

5.1.2. Small magnetic viscosity, Pm � 1: current sheet

Here λ1 ≈ 1
4
Pm, λ2 ≈ 1

4
µ, and from (5.15) we obtain

vx =U + 1
2
[1 + erf ( 1

2
ζ
√
Uµ)] + O(P−1

m ),

Hx =H− + 1
2
[∆H + (∆H − β) erf ( 1

2
ζ
√
PmU) + β erf ( 1

2
ζ
√
Uµ )]

≈H− + 1
2
[∆H + (∆H − β) sign (ζ) + β erf ( 1

2
ζ
√
Uµ )].

 (5.17)

The scale δN ∼ (νmx/U)1/2 in this case is determined by magnetic viscosity, and it
is very small compared with the scale δW ∼ (νx/U)1/2 which is determined by the
usual viscosity only. The velocity profile is determined in fact only by the wide (i.e.
based on the usual viscous) scale δW , while the magnetic field profile is two-scaled.
The magnetic field profile at ζ ≈ 0 includes a very abrupt (of width ∆ζ ∼ (PmU)−1/2)
jump (a current sheet): H(+0)−H(−0) = ∆H − β. Notice that the velocity profile is
monotonic only when ∆H − β > 0. When ∆H = β, the contribution of the narrow
solution, and also the jump in the magnetic field profile disappear, and the magnetic
field profile, like the velocity profile, becomes smooth. Furthermore, the velocities and
the magnetic field at each point are related by the relation Hx = βvx, in full accord
with the solution obtained in § 3.1 (see (3.2)).

Thus, comparing these results with those described in § 3.1 we can say that if
∆H 6= β the flow with almost frozen magnetic field produces thin current sheet, where
the frozen-in condition is not valid, and just the existence of this sheet provides the
required magnetic field difference.
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Figure 6. Schematical profiles of (a) Hx for the case of small magnetic viscosity, Pm � 1 and
(b) vx for the case of small ordinary viscosity, Pm � 1. (a) Curve 1: ∆H = β, curve 2: ∆H > β and
curve 3: ∆H < β (non-monotonic profile); (b) curve 1: ∆H = 1/β, curve 2: ∆H < 1/β, curve 3:
∆H > 1/β (non-monotonic profile) and curve 4: ∆H = 0.

The Hx profile for three variants of the relation between ∆H and β, ∆H = β,
∆H > β and ∆H < β, is shown schematically in figure 6(a).

5.1.3. Small ordinary viscosity, Pm � 1: vortex sheet

Here λ1 ≈ 1
4
(1 + Pmβ

2), λ2 ≈ 1
4
Pmµ and

vx =U + 1
2
[1 + (1− β∆H) erf ( 1

2
ζ
√
U) + β∆H erf ( 1

2
ζ
√
PmUµ )]

≈U + 1
2
[1 + (1− β∆H) sign (ζ) + β∆H erf ( 1

2
ζ
√
PmUµ )]

Hx =H− + 1
2
∆H[1 + erf ( 1

2
ζ
√
PmUµ )] + O(Pm).

 (5.18)

In this case the situation with the scales is the opposite compared to the previous
case: δW ∼ (νmx/U)1/2, δN ∼ (νx/U)1/2. The magnetic field is determined only by
its ‘own’ viscosity, i.e. varies mainly over a scale δW , while the velocity profile has
a two-scaled structure. It has near ζ = 0 the ‘jump’ vx(+0) − vx(−0) = 1 − β∆H of

width δN ∼ δWP
1/2
m against the background of a smooth variation of magnetic field

profile (a vortex sheet), but in the rest of the region it varies smoothly with the scale
δW . Note that the velocity profile is monotonic only if ∆H < 1/β.

When ∆H = 0 the magnetic field becomes uniform, the velocity profile contains
only the narrow (based on usual viscosity) scale δN and in this case the full velocity
jump ∆U = 1 takes place in the narrow viscous region near ζ = 0. This behaviour
completely matches to the solution for an inviscid vortex sheet in the uniform parallel
magnetic field which was described in § 3.2 (see (3.10) and (3.11)).

Note that only in the case of a uniform magnetic field is the viscous spreading
of the flow the same as in the case without magnetic field. For the case with finite
magnetic field difference the viscous spreading is faster.

The vx profile for four variants of the relation between ∆H and 1/β (∆H = 1/β,
∆H < 1/β, ∆H > 1/β and ∆H = 0) is schematically shown in figure 6(b).
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5.1.4. Equal viscosities, Pm = 1

We have λ1 = 1
4
(1 + β), λ2 = 1

4
(1− β) and

vx =U + 1
2
{1 + 1

2
(1− ∆H) erf [ 1

2
ζ
√

(1 + β)U ] + 1
2
(1 + ∆H) erf [ 1

2
ζ
√

(1− β)U]},
Hx =H− + 1

2
{∆H − 1

2
(1− ∆H) erf [ 1

2
ζ
√

(1 + β)U] + 1
2
(1 + ∆H) erf [ 1

2
ζ
√

(1− β)U]}.

}
(5.19)

A comparison of this solution with the exact solutions of § 4 shows that, in full accord
with the results obtained in § 4, when ∆H = −1 the solution (5.19) coincides with
the exact narrow solution, and when ∆H = 1, with the exact wide solution. Note,
however, that the superposition (5.19) of the wide and narrow solutions satisfying the
boundary conditions with an arbitrary given value of the difference ∆H is no longer
an exact solution of the initial system (2.8), (2.9) at finite (not small) values of U−1,
because this system is nonlinear.

5.2. Sub-Alfvén flows, β > 1

When β > 1, the linearly independent solution ΦW must be discarded because λ2 < 0
(see (5.9)). Consequently, the constant AW in (5.11) must be set equal to zero. Yet this
means that all necessary boundary conditions are no longer satisfied. In more exact
terms the magnetic field difference ∆H when β > 1 cannot be specified arbitrarily.
Indeed, from (5.10) and (5.12) it follows that the magnetic field and velocity differences
when AW = 0 must be related by

∆H ≡
∫ ∞
−∞
Γ0dZ =

1− 4λ1

β

∫ ∞
−∞
Φ0dZ ≡ 1− 4λ1

β
∆U.

Hence we arrive at the conclusion that when β > 1 and at a given value of the
difference ∆H other than ∆H∗, where ∆H∗ = (1− 4λ1)/β < 0, or

∆H∗ =
1

2β
{(1− Pm)− [(1− Pm)2 + 4Pmβ

2]1/2}, (5.20)

the stationary solution does not exist.
Here we are considering a very peculiar kind of situation. It turns out that the

original problem, which is formulated as a boundary-value problem, becomes, when
β > 1, the problem of seeking the eigenvalue whose role at a given β is played by the
magnetic field difference ∆H .

Sub-Alfvén flow appears to be possible, not at an arbitrary value but at a particular
value of ∆H , ∆H = ∆H∗. The plausibility of such a conclusion is also confirmed
indirectly by the reasoning that, as follows from (5.20), when Pm = 0 the ‘eigenvalue’
∆H∗ = 0, and when Pm = 1 we have ∆H∗ = −1. This is consistent with exact results
obtained in §§ 3 and 4 for these two values of Pm, for which sub-Alfvén flows, as is
already known, do exist, and precisely at the above values of the differences ∆H .

It can be shown, however, that this conclusion about the possible existence of
sub-Alfvén solutions for arbitrary Pm (Pm 6= 0, Pm 6= 1) and with the fixed magnetic
field difference ∆H = ∆H∗ is not correct. The incorrectness of the above reasoning
implies that it refers only to the zero-order approximation in ε. It turns out that
even if ∆H = ∆H∗, and there is no growing solution ΦW at the zero order, then at
the next order in ε the solution of the problem (5.5) is of necessity unbounded. This
unboundedness cannot be eliminated by any refinement (of O(ε)) of the value of ∆H∗.
The unbounded solution does not arise only for two, already known, values of Pm,
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Pm = 0 and Pm = 1, for which the exact sub-Alfvén solution exists at arbitrary U
(and hence the boundedness occurs in all orders of perturbation theory in ε).

The proof of the absence of bounded solutions of the first-approximation problem
is given in the Appendix.

6. Discussion
Summary

The structure of the mixing layer between two parallel flows with different velocities
and longitudinal magnetic fields is studied in the framework of a model of uniform
incompressible fluid with constant magnetic and usual viscosity coefficients.

For the case when relative differences of the velocity ∆vx and magnetic field ∆Hx

across the layer are small, ∆vx � v̄x, ∆Hx � H̄x explicit analytical expressions for
velocity and magnetic field profiles are obtained. The solutions involve two parameters
– the magnetic Prandtl number Pm and the interaction parameter β = c̄A/v̄x – and
demonstrate a two-scaled structure, which is described by superposition of two
probability integrals. In the case of very different viscosities, velocity and magnetic
field profiles contain regions of abrupt jumps against the background of a smooth
variation, corresponding to either vortex sheet (when Pm � 1, or Re � Rem � 1),
or a jz-electric current sheet (when Pm � 1, or Rem � Re � 1) respectively. These
solutions could be considered as a direct generalization of the solution for the so-called
Blasius mixing layer (2.12), which is well-known in hydrodynamics.

It is shown that when the relation between the magnetic field and velocity differences
is arbitrary, a stationary solution is possible only for super-Alfvén flows, β < 1. It is
proved, however, that with a special choice of this relation sub-Alfvén mixing layers
are also possible. But such a situation can be realized only for two values of the
magnetic Prandtl number: Pm = 0 (ν = 0) and Pm = 1 (ν = νm). For these two cases
exact solutions are even obtained.

In the case of Pm = 0 the sub-Alfvén solution corresponds to the well-known vortex
sheet in a uniform strongly parallel magnetic field, ∆Hx = 0, Hx = const, Hy = 0.

In the case of Pm = 1 the sub-Alfvén solution corresponds to a flow in which
the propagation rate of vorticity perturbations relative to a system of reference at
rest is constant, cA + vx(≡ Hx + vx) = const. Such a flow can be realized only if the
given magnetic field difference is equal in value and opposite in sign to the velocity
difference, ∆Hx = −∆vx.

Apparently, both these sub-Alfvén solutions must be treated as degenerate. Indeed,
the case when the viscosity is strictly zero cannot be treated as physically reasonable,
but as we have shown in the Appendix, an arbitrarily small deviation of Pm from
zero leads to the impossibility of sub-Alfvén flow. The same holds true for the case of
exact equality of viscosities. An arbitrarily small value of their difference, |ν−νm| � ν,
or violation of the condition ∆Hx = −∆vx both lead to destruction of the stationary
picture.

Physical interpretation

Below we shall try to give an interpretation of the absence of sub-Alfvén flows in
the general case (Pm 6= 1) and their possibility in the special case Pm = 1 in terms of
forces. (The reason for the possibility of sub-Alfvén flow with a vortex sheet in pure
inviscid fluid, Pm = 0, in a strongly parallel uniform magnetic field is obvious and does
not require comment, see also § 3.2.) The velocity (or vorticity) profile is determined
by the balance of two effects: the advective transfer of the vorticity downstream, and



Stationary solutions for mixing layers with a longitudinal magnetic field 355

viscous spreading in a transverse direction. The ponderomotive force prevents the
advective transfer of the vorticity, and spreading effects begin to dominate, leading
to a larger thickness of the layer than in the absence of the magnetic field. This is
described by equation (2.3), which we now write in the form

(v · ∇)vx − (H · ∇)Hx = ν
∂2vx

∂y2
. (6.1)

In the case of a sufficiently large magnetic field Hx ≈ vx the mixing layer spreads
to infinity. However, in the case Pm = 1, and, in addition, with a special choice of
the boundary conditions, i.e. at ∆Hx = −∆vx, a sub-Alfvén flow is also realized. Let
the gradients of magnetic field and velocity components at each point of the flow be
equal in value and opposite in sign, ∇Hx = −∇vx, ∇Hy = −∇vy , i.e.

Hx = −vx + c1, Hy = −vy, c1 = const. (6.2)

One can understand, using the induction equation (2.4), that with this relationship
between magnetic field and velocity differences, as well as due to the equality of
rates of diffusive spreading (νm = ν), such a relationship between the velocity and the
magnetic field is indeed possible. But in such a case from (6.2) and (6.1) it follows
that

∂Ω

∂t
+ c1

∂Ω

∂x
= ν

∂2Ω

∂y2
. (6.3)

Here Ω = ∂vx/∂y is the vorticity, and for illustrative purposes we added to the left-
hand side of (6.3) a non-stationary term (equal to zero in the steady-state problem
under consideration). Hence it turns out that with such a special self-sustaining
relationship between the magnetic field and the velocity, the inertial force everywhere
exceeds the electromagnetic force at any magnitude of the magnetic field, including
the case of cA > vx, and the vorticity is carried with a constant velocity c1 =
vx(x, y)+cA(x, y). Equation (6.3) represents the usual diffusion equation with a constant
positive diffusion coefficient D = ν/(vx + cA). Note that the solution just described is
a particular case of the narrow solution (c1 = 4λ1), corresponding to choice ξ0 = 0,
when vy(±∞) = Hy(±∞) = 0 (see § 4 and figures 3 and 4).

It can be said that in this special case it is possible to extract a ‘good’ solution
corresponding to the Alfvén wave propagating downstream (that is, the solution
of equation (6.3)) from the ‘bad’ solution corresponding to the propagation of the
vorticity with the velocity c2 = vx − cA. This velocity is directed upstream in the sub-
Alfvenic case cA > vx, and the ‘impurity’ of such a solution destroys the stationary
picture. When Pm 6= 1, as well as when Pm = 1, but ∆Hx 6= −∆vx, such a splitting is
impossible, which leads to the impossibility of sub-Alfvén flows.

Note that the specificity of the value Pm = 1 for MHD was indicated by Hasimoto
(1959b) who has shown that for the case Pm = 1 the MHD equations have some
interesting properties, and, in particular, permit exact nonlinear solution in a form of
dissipative waves.

Remarks on the impossibility of partially sub-Alfvén flow

Note that, strictly speaking, the conclusion about the impossibility of sub-Alfvén
flows has thus far been drawn only on the basis of results relevant to flows with
small relative differences. However, the validity of this conclusion for arbitrary flows
is virtually beyond question. An analysis of the asymptotic behaviour of the solutions
of the system (2.8), (2.9) as ξ → ±∞ also confirms such a conclusion. Indeed, for the
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asymptotic behaviour of two independent solutions constituting f′′ and χ′′, we have
Φ±N,W (ξ) ∝ exp [−λ±N,WU±(ξ − ξ±0 )2], where

λ±N = 1
8
(1 + Pm) (1 + Q±), λ±W = 1

8
(1 + Pm) (1− Q±),

Q± = [1 + 4Pm (β2
± − 1)/(1 + Pm)2]1/2,

and β± = H±/U±, U− = U, U+ = U + 1. Here the + and − signs refer to the
asymptotic behaviour as ξ → +∞ and ξ → −∞ respectively, and in the general case
ξ+

0 6= ξ−0 .
Hence it follows that if at least one of β± tends to unity, the ‘half-thickness’ of

the layer on the respective side tends to infinity. It is also evident that as long as
β± < 1, we can find (only numerically) the solution satisfying all boundary conditions
imposed.

If, however, at least on one side the flow becomes sub-Alfvén, i.e. at least one of β+

or β− becomes larger than unity, the corresponding value of λW becomes negative. In
this case ΦW increases with no limit in the respective direction, and the boundedness
condition of f′′ and χ′′ no longer holds automatically. Hence, with arbitrary imposed
boundary conditions at which at least on one side β > 1, there is certainly no
solution. In principle, it is still not inconceivable that the boundedness condition can
be satisfied by fitting some of the boundary values of the magnetic field (at fixed
boundary values of the velocity). Most likely, however, such a possibility (except for
Pm = 0 and Pm = 1) also cannot be realized. In the case with small relative differences
we have demonstrated this rigorously (in the Appendix). In the case of arbitrary, not
small, differences, however, our attempt to determine numerically the ‘eigenvalue’ of
H+ for given H− and U, has not met with success.

Thus it appears that the conclusion about the impossibility of at least a partially
sub-Alfvén mixing layer is quite convincing.

Note that a similar conclusion about impossibility of a stationary flow when the
parameter of interaction β = cA/U exceeds unity has been made by Meksyn (1962)
for the problem of the boundary layer on a flat plate. (Here cA and U are Alfvén and
flow velocities in the outer flow; on the plate itself magnetic field and velocity are
absent.) However, it is interesting that even in the special case Pm = 1 the solution for
β > 1 does not exist for a boundarys layers. The reason for such difference between
mixing layers and boundary layers lies in the fact that in the case of a boundary layer
the flow with vx + cA = const cannot be created.

Results in the context of nonlinear evolution

In closing it may be said that the results obtained here help to resolve a difficulty
(or paradox) that emerged in Paper I (Shukhman 1998a) devoted to the study of
the downstream nonlinear evolution of unstable perturbations excited by a periodic
source in the mixing layer with a longitudinal magnetic field. This difficulty arose
when the velocity profile included a region where the Alfvén velocity exceeded the
fluid velocity. Formally, it implied that the equation for the zeroth harmonic of the
perturbation (equation (A8) of Paper I), having the form of a diffusion equation with
a source, lost its physical meaning: the downstream coordinate could no longer be
treated as a time-like one, because the ‘time arrow’ in this case is directed backwards
or, equivalently, the viscosity is negative. This means the violation of ‘causality’:
regions lying downstream can influence those lying upstream. Therefore, to avoid this
difficulty we restricted ourselves in Paper I only to the case of ‘fast’ (i.e. super-Alfvén)
flows in which umin > cA. In the light of the results reported in this paper, it becomes
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clear that this restriction is in fact a natural requirement which has to be imposed on
background flow. In other words, the difficulty mentioned above was illusiory. It was
associated with an incorrect attempt to describe the evolution of perturbations on
the background of a sub-Alfvén mean flow which, as is now apparent, is impossible
to create.

I am grateful to Dr S. M. Churilov for helpful discussions and Mr V. G.
Mikhalkovsky for his assistance in preparing the English version of the text.

Appendix. Proof of the impossibility of a bounded solution of the first
order-approximation problem at β > 1

Denote F̃ ′′1 = Φ1, G̃
′′
1 = Γ1. Then from (5.5) we obtain

Φ′1 − 1
2
Z(βΓ1 − Φ1) = 1

2
%1,

Γ ′1
Pm
− 1

2
Z(βΦ1 − Γ1) =

%2

β
, (A 1)

%1 ≡ G̃0Γ0 − F̃0Φ0, %2 ≡ 1
2
β(G̃0Φ0 − F̃0Γ0). (A 2)

It is easy to reduce the system (A1) to a single equation for Φ1:

LΦ1(Z) = ZR (Z), where R(z)≡ 1
2
[ 1

2
Pm + (d/dz)(z−1)]%1(z) + 1

2
Pm%2(z), (A 3)

and the operator L is defined by (5.8). Recall that the solutions of the homogeneous
equation LΦ = 0 are the functions ΦN(z) = e−λ1z

2

and

ΦW (z) = e−λ2z
2

= ΦN(z)

[
1−

∫ z

0

dxW (x)Φ−2
N (x)

]
, (A 4)

where λ1 > 0, λ2 < 0. Following the general rules governing the solution of the
inhomogeneous equation, the solution (A3) may be written as

Φ1(Z) = ΦN(Z)

∫ Z zR(z)

W (z)
ΦW (z) dz − ΦW (Z)

∫ Z zR(z)

W (z)
ΦN(z) dz,

or, using (A4), in the form

Φ1(Z) = ΦN(Z)

∫ Z

0

dxW (x)

Φ2
N(x)

[
bW +

∫ x

−∞
zΦN(z)

W (z)
R(z) dz

]
+ bNΦN(Z). (A 5)

We now choose a constant bW equal to zero. This means that Φ1 does not contain
growing exponential ∼ exp (−λ2Z

2) as Z → −∞. In order for Φ1 not to contain it also
as Z → +∞ it is necessary to require that I =

∫ ∞
−∞[zΦN(z)R(z)/W (z)]dz = 0. This

is, in principle, just the boundedness condition of the first-approximation solution.
This involves some subtlety, however. The point is that, according to (A3), R(z)
has a second-order pole at z = 0, and zΦN/W is regular at z = 0, so that the
integrand in I also has a second-order pole. Therefore, before proceeding to verifying
the boundedness condition, we transform (A5) and reformulate this condition in a
form free from the above-mentioned difficulty with the divergence. On substituting
R(z) from (A3) into (A5) and integrating the singular term (d/dz)(%1/z) by parts, we
obtain

Φ1(Z) = ΦN(Z)

[
baN + 1

2

∫ Z

0

dx %1(x)

ΦN(x)
−
∫ Z

0

dxW (x)

Φ2
N(x)

Π(x)

]
, (A 6)
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where

Π(x) =

∫ x

−∞
dz
zΦN(z)

W (z)

[
( 1

4
− λ1)%1(z)− 1

2
Pm%2(z)

]
. (A 7)

The boundedness condition of Φ1, as is evident from (A6), can now be formulated
as Π(+∞) = 0. The integrand in (A7) now contains no singularity at z = 0, and the
integral Π(∞) is readily evaluated. From (5.11)–(5.14) we have, when AW = 0,

Φ0 = (λ1/π)1/2e−λ1z
2

, Γ0 = ∆H∗Φ0,

F̃0 = 1
2
{[1 + erf (z

√
λ1 )] z + (λ1π)−1/2 e−λ1z

2}, G̃0 = ∆H∗ F̃0.

}
(A 8)

Substituting (A8) into (A2) gives %2 = 0 and %1 = [(∆H∗)2 − 1]F̃0Φ0. On performing
the integration, we eventually obtain the expression for Π(∞):

Π(∞) =
1− Pm

4Pm

λ1

(λ1 − λ2)2

(
2λ1 − λ2

π

)1/2

(∆H∗)2. (A 9)

The expression (A9) shows that the boundedness condition for Φ1, i.e. Π(∞) = 0,
does not hold.

The sole exception is the case Pm = 1. It can be shown that Π(∞) also becomes
zero when Pm = 0. Indeed, when Pm → 0 we have λ1 ≈ 1

4
, λ2 = O(Pm), and it follows

from (5.20) that ∆H∗ ≈ −Pmβ2. Therefore Π(∞) = (2π)−1/2β2Pm → 0 when Pm → 0.
Thus we have shown that sub-Alfvén (β > 1) flows with Pm 6= 0 and Pm 6= 1 cannot

exist not only at arbitrary specified values of the magnetic field difference ∆H but
also at ∆H = ∆H∗.

It should be noted in conclusion that for super-Alfvén flows, β < 1 , the tran-
sition to a first approximation does not give any additional limitations on the
zero-approximation solution.
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